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Abstract. We present an elementary proof of a general version of Mon-
tel’s theorem in several variables which is based on the use of tensor
product polynomial interpolation. We also prove a Montel-Popoviciu’s
type theorem for functions f : Rd ! R for d > 1. Furthermore, our
proof of this result is also valid for the case d = 1, di↵ering in several
points from Popoviciu’s original proof. Finally, we demonstrate that our
results are optimal.
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1. Introduction

The study of functional equations has substantially grown in the last three
decades [1], [10], [22], [23], [34], [37]. Research in this area is provoking in-
teresting questions concerning characterizations of polynomials [4], [30] and
exponential polynomials [42], [45]. These concrete questions have close con-
nections to spectral analysis and synthesis and have found its way to a number
of interesting applications [42], [43], [44]. Both Montel and Popoviciu, in their
seminal papers [32], [33] and [36], used Fréchet functional equation, with some
additional regularity conditions, for the characterization of polynomials. In
this paper, we are interested in generalizing these results, by using some new
tools, in the several variable setting. Our aim is to show that under suitable
conditions we again end up with polynomials.

Concretely, we are interested in a special regularity result for the the
functional equation �m+1

h

f(x) = 0, where f : Rd ! R and the higher dif-
ferences operator �m+1

h

is inductively defined by �1

h

f(x) = f(x+ h)� f(x),
and �n+1

h

f(x) = �
h

(�n

h

f)(x), n = 1, 2, · · · . This equation was introduced in
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the literature for functions f : R ! R, by M. Fréchet in 1909 as a particular
case of the functional equation

�
h1h2···hm+1f(x) = 0 (x, h

1

, h
2

, . . . , h
m+1

2 R), (1.1)

where f : R ! R and �
h1h2···hsf(x) = �

h1 (�h2···hsf) (x), s = 2, 3, · · · .
In particular, after Fréchet’s seminal paper [15], the solutions of (1.1) are
named “polynomial functions” by the functional equations community, since
it is known that, under very mild regularity conditions on f , if f : R ! R
satisfies (1.1), then f(x) = a

0

+ a
1

x + · · · a
m

xm for all x 2 R and certain
constants a

i

2 R. For example, in order to have this property, it is enough
for f being bounded on a set A ✓ R of positive Lebesgue measure |A| > 0
(see, for example, [42] for a proof of this result). Equation (1.1) can also be
studied for functions f : X ! Y whenever X,Y are two Q-vector spaces and
the variables x, h

1

, · · · , h
m+1

are assumed to be elements of X:

�
h1h2···hm+1f(x) = 0 (x, h

1

, h
2

, . . . , h
m+1

2 X). (1.2)

In this context, the general solutions of (1.2) are characterized as functions
of the form f(x) = A

0

+ A
1

(x) + · · · + A
m

(x), where A
0

is a constant and
A

k

(x) = Ak(x, x, · · · , x) for a certain k-additive symmetric function Ak :
Xk ! Y (we say that A

k

is the diagonalization of Ak). In particular, if
x 2 X and r 2 Q, then f(rx) = A

0

+ rA
1

(x) + · · ·+ rmA
m

(x). Furthermore,
it is known that f : X ! Y satisfies (1.2) if and only if it satisfies

�m+1

h

f(x) :=
m+1X

k=0

✓
m+ 1

k

◆
(�1)m+1�kf(x+ kh) = 0 (x, h 2 X). (1.3)

A proof of this fact follows directly from Djoković’s Theorem [13] (see also [20,
Theorem 7.5, page 160], [26, Theorem 15.1.2., page 418] and, for a completely
di↵erent new proof, [45]).

In 1935 P. Montel [32] studied Fréchet’s functional equation from a
fresh perspective (see also [33]). Indeed, he was not motivated by Fréchet’s
paper but by a much older one by Jacobi [21], who in 1834 proved that if

f : C ! bC is a non-constant meromorphic function defined on the complex
numbers, then P

0

(f) = {w 2 C : f(z + w) = f(z) for all z 2 C}, the set of
periods of f , is a discrete subgroup of (C,+). This reduces the possibilities
to the following three cases: P

0

(f) = {0}, or P
0

(f) = {nw
1

: n 2 Z} for a
certain complex number w

1

6= 0, or P
0

(f) = {n
1

w
1

+ n
2

w
2

: (n
1

, n
2

) 2 Z2}
for certain complex numbers w

1

, w
2

satisfying w
1

, w
2

6= 0 and w
1

/w
2

62 R.
In particular, these functions cannot have three independent periods and
there exist meromorphic functions f : C ! bC with two independent periods
w

1

, w
2

as soon as w
1

/w
2

62 R. These functions are called doubly periodic
(or elliptic) and have an important role in complex function theory [24].
Analogously, if the function f : R ! R is continuous and non-constant, it does
not admit two Q-linearly independent periods. Obviously, Jacobi’s theorem
can be formulated as a result which characterizes the constant functions as
those meromorphic functions f : C ! bC which solve a system of functional
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equations of the form

�
h1f(z) = �

h2f(z) = �
h3f(z) = 0 (z 2 C), (1.4)

for three independent periods {h
1

, h
2

, h
3

} (i.e., h
1

Z + h
2

Z + h
3

Z is a dense
subset of C). For the real case, the result states that, if h

1

, h
2

2 R\{0} are two
nonzero real numbers and h

1

/h
2

62 Q, the continuous function f : R ! R is
a constant function if and only if it solves the system of functional equations

�
h1f(x) = �

h2f(x) = 0 (x 2 R). (1.5)

In [32], [33] Montel substituted �m+1

h

for �
h

in the equations (1.4), (1.5)
and proved that these equations are appropriate for the characterization of
ordinary polynomials.

Theorem 1.1 (Montel). Assume that f : C ! C is an analytic function which
solves a system of functional equations of the form

�m+1

h1
f(z) = �m+1

h2
f(z) = �m+1

h3
f(z) = 0 (z 2 C) (1.6)

for three independent periods {h
1

, h
2

, h
3

}. Then f(z) = a
0

+ a
1

z + · · · +
a
m

zm is an ordinary polynomial with complex coe�cients and degree  m.
Furthermore, if {h

1

, h
2

} ⇢ R\{0} satisfy h
1

/h
2

62 Q, the continuous function
f : R ! R is an ordinary polynomial with real coe�cients and degree  m if
and only if it solves the system of functional equations

�m+1

h1
f(x) = �m+1

h2
f(x) = 0 (x 2 R). (1.7)

To highlight the relationship between his theorem and Jacobi’s results,
Montel named “generalized periods” of order m+1 of f to the vectors h such
that �m+1

h

f = 0.
Montel’s result uses the regularity properties of Fréchet’s functional

equation in a new non-standard form. Indeed, the idea is now not to con-
clude the regularity of f from the assumption that it solves the equation for
all h and it satisfies some mild regularity condition, but to assume that f
is globally regular (indeed, it is continuous everywhere) and to describe the
minimal set � of generalized periods h such that, if the equation is solved for
all h 2 �, then it is also solved for all h. Thus, the regularity of the solution
is assumed and used to conclude that, in order to be a solution of Fréchet’s
equation it is enough to have a very small set of generalized periods.

In his paper [33], Montel also studied the equation (1.3) for X = Rd,
with d > 1, and f : Rd ! C continuous, and for X = Cd and f : Cd ! C
analytic. Concretely, he stated (and gave a proof for d = 2) the following
result.

Theorem 1.2 (Montel’s Theorem in several variables). Let {h
1

, · · · , h
s

} ⇢ Rd

be such that

h
1

Z+ h
2

Z+ · · ·+ h
s

Z is a dense subset of Rd, (1.8)

and let f 2 C(Rd,C) be such that �m

hk
(f) = 0, k = 1, · · · , s. Then f(x) =P

|↵|<N

a
↵

x↵ for some N 2 N, some complex numbers a
↵

, and all x 2 Rd.

Thus, f is an ordinary complex-valued polynomial in d real variables.
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Consequently, if d = 2k, {h
i

}s
i=1

satisfies (1.8), the function f : Ck ! C
is holomorphic and �m

hk
(f) = 0, k = 1, · · · , s, then f(z) =

P
|↵|<N

a
↵

z↵ is

an ordinary complex-valued polynomial in k complex variables.

The finitely generated subgroups of (Rd,+) which are dense in Rd have
been actively studied and, in fact, they can be characterized in several ways.
For example, in [48, Proposition 4.3], the following theorem is proved:

Theorem 1.3. Let G = h
1

Z+ h
2

Z+ · · ·+ h
s

Z be the additive subgroup of Rd

generated by the vectors {h
1

, · · · , h
s

}. The following statements are equiva-
lent:

(i) G is a dense subgroup of Rd.
(ii) If h

k

= (a
1k

, a
2k

, · · · , a
dk

) are the coordinates of h
k

with respect to the
canonical basis of Rd (k = 1, · · · , s), then the matrices

A(n
1

, · · · , n
s

) =

2

666664

a
11

a
12

· · · a
1s

a
21

a
22

· · · a
2s

...
...

. . .
...

a
d1

a
d2

· · · a
ds

n
1

n
2

· · · n
s

3

777775
.

have rank equal to d+ 1, for all (n
1

, · · · , n
s

) 2 Zs \ {(0, · · · , 0)}.

A simple case which has motivated the study of dense subgroups of
(Rd,+), is the following one:

Corollary 1.4 (Kronecker’s theorem). Given ✓
1

, ✓
2

, · · · , ✓
d

2 R, the group
Zd + (✓

1

, ✓
2

, · · · , ✓
d

)Z (which is generated by exactly d + 1 elements) is a
dense subgroup of Rd if and only if

n
1

✓
1

+ · · ·+ n
d

✓
d

62 Z, for all (n
1

, · · · , n
d

) 2 Zd \ {(0, · · · , 0)}

in other words, this group is dense in Rd if and only if {1, ✓
1

, · · · , ✓
d

} forms
a linearly independent system over Q.

Proof. The vectors {e
k

}d
k=1

[ {(✓
1

, · · · , ✓
d

)}, where

e
k

= (0, 0, · · · , 1(k-th position), 0, · · · , 0), k = 1, · · · , d,
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generate the group G = Zd+(✓
1

, ✓
2

, · · · , ✓
d

)Z. Thus, part (ii) from Theorem
1.3 guarantees that G is dense in Rd if and only if

det

2

666664

✓
1

1 0 · · · 0
✓
2

0 1 · · · 0
...

...
. . .

...
✓
d

0 0 · · · 1
n
0

n
1

n
2

· · · n
d

3

777775

= (�1)d+2n
0

+
dX

k=1

(�1)d+2+kn
k

(�1)k+1✓
k

det(I
d�1

)

= (�1)d
 
n
0

�
dX

k=1

n
k

✓
k

!
6= 0

for all (n
0

, n
1

, · · · , n
d

) 2 Zd+1\{(0, · · · , 0)}, which is equivalent to claim that

n
1

✓
1

+ · · ·+ n
d

✓
d

62 Z, for all (n
1

, · · · , n
d

) 2 Zd \ {(0, · · · , 0)},
which is what we looked for. To prove the last claim in the theorem, it
is enough to observe that, if {1, ✓

1

, · · · , ✓
d

} forms a Q-linearly dependent
system, then there are rational numbers r

i

= n
i

/m
i

, i = 0, 1, · · · , d (not all
of them equal to zero), such that

r
0

+ r
1

✓
1

+ · · ·+ r
d

✓
d

= 0,

so that, multiplying both sides of the equation by m =
Q

d

k=0

m
k

we get

n⇤
0

+ n⇤
1

✓
1

+ · · ·+ n⇤
d

✓
d

= 0

for certain natural numbers n⇤
0

, n⇤
1

, · · · , n⇤
d

(not all equal to zero). In partic-
ular,

n⇤
1

✓
1

+ · · ·+ n⇤
d

✓
d

2 Z.
⇤

Montel’s theorem was improved by his student T. Popoviciu [36] for the
case d = 1 to the following:

Theorem 1.5 (Popoviciu, 1935). Let f : R ! R be such that

�m+1

h1
f(x) = �m+1

h2
f(x) = 0, (x 2 R),

If h
1

/h
2

62 Q and f is continuous in at least m + 1 distinct points, then
f 2 ⇧

m

.

In section 2 we prove, by very elementary means, a theorem which gen-
eralizes Montel’s Theorem in several variables. In section 3 we prove a version
of Montel-Popoviciu’s theorem for functions f : Rd ! R for d > 1. Further-
more, our proof is also valid for the case d = 1, and, in that case, it di↵ers
in several points from Popoviciu’s original proof. In section 4 we prove that
Popoviciu’s original result is optimal, since, if h

1

, h
2

2 R and h
1

/h
2

62 Q, there
exists f : R ! R continuous in m distinct points which is not an ordinary
polynomial and solves the system of equations �m+1

h1
f(x) = �m+1

h2
f(x) = 0.
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Finally, in that section we also consider the optimality of Montel-Popoviciu’s
theorem in the several variables setting.

In this paper we use the following standard notation: ⇧
m

denotes the
space of complex polynomials of a real variable, with degree  m. ⇧d

m,max

denotes the space of complex polynomials of d real variables, with degree  m
with respect to each one of these variables. More precisely, P (x

1

, · · · , x
d

) 2
⇧d

m,max

if and only if

P (x
1

, · · · , x
d

) =
mX

i1=0

mX

i2=0

· · ·
mX

id=0

a
i1,··· ,idx

i1
1

· · ·xid
d

,

with a
i1,··· ,id being complex numbers. Finally, ⇧d

m,tot

denotes the space of
complex polynomials of d real variables, with total degree  m; that is,
P (x

1

, · · · , x
d

) 2 ⇧d

m,tot

if and only if

P (x
1

, · · · , x
d

) =
X

i1,··· ,id2N and i1+···+idm

a
i1,··· ,idx

i1
1

· · ·xid
d

,

with a
i1,··· ,id being complex numbers. Of course, ⇧

m

= ⇧1

m,max

= ⇧1

m,tot

.

2. A generalization of Montel theorem

For the statement of the results in this section, we need to recall the following
concept from interpolation theory: Given ⇤ ✓ ⇧d a subspace of the space
of polynomials in d real variables, and given W ✓ Rd, we say that W is
a correct interpolation set (sometimes also referred as insolvent ) for ⇤ if
and only if for any function f : W ! C there exists a unique polynomial
P 2 ⇤ such that P (x) = f(x) for all x 2 W . In particular, if W is a correct
interpolation set for ⇤ and P 2 ⇤ satisfies P|W = 0, then P = 0. These sets
have been characterized for several spaces of polynomials ⇤ [46]. In particular,
the technique of tensor product interpolation guarantees that the sets W of
the form

W = {x1

0

, x1

1

, · · · , x1

m

}⇥ {x2

0

, x2

1

, · · · , x2

m

}⇥ · · ·⇥ {xd

0

, xd

1

, · · · , xd

m

},

which form a rectangular grid of (m+ 1)d points in Rd, are correct interpo-
lation sets for ⇤ = ⇧d

m,max

(see, e.g., [19, page 295]).
Let G be an Abelian group, let f : G ! C be an arbitrary function.

The functions �n

h

f : G ! C are well defined and f is named a complex
polynomial function of degree  m on G if �m+1

h

f(x) = 0 for all x, h 2 G.
If there exist additive functions a

k

: G ! C, k = 1, · · · , t and an ordinary
complex polynomial P 2 C[x

1

, · · · , x
t

] of total degree  m such that f(x) =
P (a

1

(x), · · · , a
t

(x)) for all x 2 G, we just say that f is a polynomial on
G. It is known that, for finitely generated Abelian groups, every polynomial
function is a polynomial [42].

Given � = {h
1

, · · · , h
s

} ✓ G, a 2 G, and given f : G ! C a polynomial
function of degree  m, there exists a unique polynomial P = P

a,�

2 ⇧s

m,max
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such that

P (i
1

, i
2

, · · · , i
s

) = f
i1,··· ,is := f(a+

sX

k=1

i
k

h
k

),

for all 0  i
k

 m, 1  k  s, since W = {(i
1

, · · · , i
s

) : 0  i
k

 m, k =
1, · · · , s} is a correct interpolation set for ⇧s

m,max

. In all what follows, we
denote this polynomial by P

a,�

.

Lemma 2.1. Let G be a commutative group and f : G ! C be a function. If
�m+1

hk
f(x) = 0 for all x 2 G and k = 1, · · · , s, then

P
a,�

(i
1

, i
2

, · · · , i
s

) = f(a+
sX

k=1

i
k

h
k

), for all (i
1

, · · · , i
s

) 2 Zd+1.

Proof. Let us fix the values of k 2 {1, · · · , s} and i
1

, · · · , i
k�1

, i
k+1

, · · · , i
s

2
{0, 1, · · · ,m}, and let us consider the polynomial of one variable

q
k

(x) = P
a,�

(i
1

, · · · , i
k�1

, x, i
k+1

, · · · , i
d+1

).

Obviously q
k

2 ⇧1

m

, so that

0 = �m+1

1

q
k

(0) =
m+1X

r=0

✓
m+ 1

r

◆
(�1)m+1�rq

k

(r)

=
mX

r=0

✓
m+ 1

r

◆
(�1)m+1�rP

a,�

(i
1

, · · · , i
k�1

, r, i
k+1

, · · · , i
d+1

) + q
k

(m+ 1)

=
mX

r=0

✓
m+ 1

r

◆
(�1)m+1�rf(a+

X

(0js; j 6=k)

i
j

h
j

+ rh
k

) + q
k

(m+ 1)

= �m+1

hk
f(a+

X

(0js; j 6=k)

i
j

h
j

)� f(a+
X

(0js; j 6=k)

i
j

h
j

+ (m+ 1)h
k

)

+q
k

(m+ 1)

= q
k

(m+ 1)� f(a+
X

(0js; j 6=k)

i
j

h
j

+ (m+ 1)h
k

).

It follows that

q
k

(m+ 1) = P
a,�

(i
1

, · · · , i
k�1

, (m+ 1), i
k+1

, · · · , i
s

)
= f(a+

P
(0js; j 6=k)

i
j

h
j

+ (m+ 1)h
k

).
(2.1)

Let us now consider the unique polynomial P 2 ⇧s

m,max

which satisfies the
Lagrange interpolation conditions

P (i
1

, i
2

, · · · , i
s

h
s

) = f(a+
sX

k=1

i
k

h
k

)

for all 0  i
j

 m, 1  j  s, j 6= k, and all 1  i
k

 m+1. We have already
demonstrated, with formula (2.1), that this polynomial coincides with P

a,�

.
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Furthermore, the very same arguments used to prove (2.1), applied to the
polynomial P = P

a,�

, lead us to the conclusion that

P
a,�

(i
1

, · · · , i
k�1

, (m+ 2), i
k+1

, · · · , i
s

h
s

)

= f(a+
X

(0js; j 6=k)

i
j

h
j

+ (m+ 2)h
k

)

In an analogous way, extracting this time the first term of the sum, and
taking as starting point the equality

�m+1

hk
f(a+

X

(0js; j 6=k)

i
j

h
j

� h
k

) = 0,

we conclude that

P
a,�

(i
1

, · · · , i
k�1

,�1, i
k+1

, · · · , i
s

)

= f(a+
X

(0js; j 6=k)

i
j

h
j

� h
k

).

Repeating these arguments forward and backward infinitely many times, and
for each k 2 {1, · · · , s}, we get

P
a,�

(i
1

, i
2

, · · · , i
s

)

= f(a+
sX

k=1

i
k

h
k

), for all (i
1

, · · · , i
s

) 2 Zd+1,

which is what we wanted to prove. ⇤
Corollary 2.2. Let G be a topological Abelian group. If f : G ! C satisfies
�m+1

hk
f(x) = 0 for all x 2 G and k = 1, · · · , s, then

�sm+1

h

f(x) = 0

for all h 2 H = h
1

Z+ · · ·+ h
s

Z.

Proof. Let P
a,�

be the polynomial constructed in Lemma 2.1, and let x 2 Rd.
Then

P
x,�

(i
1

, i
2

, · · · , i
s

) = f(x+
sX

k=1

i
k

h
k

), for all (i
1

, · · · , i
s

) 2 Zd+1.

Hence, if h =
P

s

k=1

i
k

h
k

2 G,

�sm+1

h

f(x) =
sm+1X

r=0

✓
sm+ 1

r

◆
(�1)sm+1�rf(x+ r

sX

k=1

i
k

h
k

)

=
sm+1X

r=0

✓
sm+ 1

r

◆
(�1)sm+1�rP

x,�

(r(i
1

, · · · , i
s

))

= �sm+1

(i1,··· ,is)Px,�

(0) = 0,

since P
x,�

is a polynomial in s variables of total degree  sm. This proves
the first part of the corollary. ⇤
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Corollary 2.3. If G is a topological Abelian group, f : G ! R is continuous
and satisfies �m+1

hk
f(x) = 0 for all x 2 G and k = 1, · · · , s and H = h

1

Z +
· · ·+ h

s

Z is a dense subgroup of G, then

�sm+1

h

f(x) = 0

for all x, h 2 G. In other words, f is a continuous polynomial on G of degree
 sm.

In particular, if G = Rd, then f 2 ⇧d

sm,tot

.

Proof. Let us now assume also that f is continuous and G is dense in Rd.
Then it is clear that �sm+1

h

f(x) = 0 for all x, h in Rd, and, if G = Rd,
Fréchet’s Theorem implies that f is an ordinary polynomial. In fact, it is not
di�cult to prove that, in this case, f must have total degree  sm (see, for
example, [5, Theorem 3.1]). ⇤
Remark 2.4. Corollary 2.3 is optimal for G = Rd since, for each s � d + 1
there exists f : Rd ! R and {h

1

, · · · , h
s

} ⇢ Rd such that H = h
1

Z+ · · ·+h
s

Z
is dense in Rd, �m+1

hk
f(x) = 0 for all x 2 Rd and k = 1, · · · , s, and �sm

h

f 6= 0

for some h 2 H. To prove this, let � = {h
1

, · · · , h
s

} ✓ Rd be such that
G = h

1

Z+ · · ·+ h
s

Z is dense in Rd, and let us assume that

A
�

= col[h
1

, · · · , h
s

] =

2

6664

a
11

a
12

· · · a
1s

a
21

a
22

· · · a
2s

...
. . . · · ·

...
a
d1

a
d2

· · · a
ds

3

7775

contains a set {a
k1

, a
k2

, · · · , a
ks

} which forms a Q-linearly independent set of
real numbers. If we consider two vectors (i

1

, · · · , i
s

), (j
1

, · · · , j
s

) 2 Zs, then

i
1

h
1

+ · · ·+i
s

h
s

= j
1

h
1

+ · · ·+j
s

h
s

if and only if i
k

= j
k

for all k = 1, · · · , s.
Hence the function f : Rd ! R given by

f(x) =

⇢
P (i

1

, · · · , i
s

) if x = i
1

h
1

+ · · ·+ i
s

h
s

and (i
1

, · · · , i
s

) 2 Zs

0 otherwise
,

is well defined for any map P : Zs ! R. Let P 2 ⇧s

m,max

✓ ⇧s

sm,tot

be the
polynomial P (x

1

, · · · , x
s

) = xm

1

xm

2

· · ·xm

s

. Then

�m+1

hk
f(x) = 0, for all x 2 R and k = 1, · · · , s,

and, on the other hand, if we consider the monomial '
N

: R ! R defined by
'
N

(t) = tN , then

�sm

h1+···+hs
f(0) = �sm

(1,1,1,··· ,1)P (0, 0, · · · , 0)

=
smX

k=0

✓
sm

k

◆
(�1)sm�kP (k, k, · · · , k)

=
smX

k=0

✓
sm

k

◆
(�1)sm�kksm

= �sm

1

'
sm

(0) = (sm)!'
sm

(1) = (sm)! 6= 0,
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since the monomials '
N

satisfy the functional equation 1

N !

�N

h

'
N

(x) = '
N

(h).
Hence f satisfies our requirements.

To support our argument let us show an example of matrix A
�

satisfying
our hypotheses. Let {1, ✓

1

, · · · , ✓
d

} be a Q-linearly independent set of real
numbers of size d + 1 with s = d + 1. Indeed, we impose ✓

k

= ⇡k for all k.
Let us consider the matrix

A
�

= col[h
1

, · · · , h
s

] :=

2

6664

⇡ 1 ⇡2 · · · ⇡d

⇡2 0 1 · · · 0
...

...
. . .

...
⇡d 0 0 · · · 1

3

7775

Then part (ii) of Theorem 1.3 claims that G = h
1

Z + · · · + h
s

Z is dense in
Rd if and only if, for each (n

0

, · · · , n
d

) 2 Zd+1 \ {(0, · · · , 0)},

0 6= det(B
�

(n
0

, · · · , n
d

)) := det

2

666664

⇡ 1 ⇡2 · · · ⇡d

⇡2 0 1 · · · 0
...

...
. . .

...
⇡d 0 0 · · · 1
n
0

n
1

n
2

· · · n
d

3

777775

Now, a simple computation (expanding the determinant by the first row)
shows that

det(B
�

(n
0

, · · · , n
d

))

= (�1)dn
0

+ (�1)d+1[⇡ �
dX

k=2

⇡2k]n
1

+ (�1)d+1

dX

k=2

⇡kn
k

= (�1)dn
0

+ (�1)d+1

dX

k=1

⇡kn
k

+ (�1)d
dX

k=2

⇡2kn
1

,

which does not vanish if (n
0

, · · · , n
d

) 2 Zd+1 \ {(0, · · · , 0)}, since ⇡ is a
transcendental number. This solves the case s = d + 1. The general case
follows as a direct consequence of this one, since the matrices

2

666664

⇡ 1 ⇡2 · · · ⇡d ⇡d+1 · · · ⇡s

⇡2 0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
⇡d 0 0 · · · 1 0 · · · 0
n
0

n
1

n
2

· · · n
d

n
d+1

· · · n
s

3

777775

contain B
�

(n
0

, · · · , n
d

) as a submatrix and, hence, have maximal rank for all
s > d and all (n

0

, · · · , n
s

) 2 Zs+1 \ {(0, · · · , 0)}.

Several distributional techniques have been used in the study of func-
tional equations. In particular, Fourier transform of tempered distributions is
used in [8] to introduce a method of solving some special functional equations.
This motivates study Montel’s type theorems in the distributional setting. Let
S 0(Rd) denote the space of complex tempered distributions defined on Rd.



On Montel and Montel-Popoviciu theorems in several variables 11

Obviously, S 0(Rd) is a vector space and the operators �s

h

can be defined as
endomorphisms of S 0(Rd) by the formula,

�s

h

f{'} = (�1)sf{�s

�h

'}

for s = 1, 2, · · · . Furthermore, if ↵ = (↵
1

, · · · ,↵
d

) 2 Nd is any multi-index and

we denote by D↵f =
@↵1

@x↵1
1

@↵2

@x↵2
2

· · · @↵d

@x↵d
d

f the ↵-th generalized derivative of

f , then �m

h

D↵ = D↵�m

h

for all m 2 N, and if D↵f = 0 for all multi indices
↵ with |↵| = n, then there exists P 2 ⇧d

n�1,tot

such that P = f almost
everywhere. Of course, if f is taken to be continuous, then f = P everywhere.
Finally, the structure theorem for tempered distributions guarantees that if
f 2 S 0(Rd) then there exist a slowly growing continuous function F and a
natural number n 2 N such that f = D(n,n,··· ,n)F [47, page 98]. Tempered
distributions are also interesting because the Fourier transform F can be
defined as an automorphism F : S 0(Rd) ! S 0(Rd) just imposing F(f){'} =
f{F(')}, and the new operator preserves the main properties of the classical
Fourier transform (see, for example, [14, page 144], [38, page 192, Theorem
7.15]).

Lemma 2.5. Assume that f 2 S 0(Rd) and let � = �1

e1
�1

e2
· · ·�1

ed
and n 2

N \ {0}. Then D(n,n,··· ,n)f = 0 implies �nf = 0.

Proof. f 2 S 0(Rd) implies that

F(D↵f)(⇠) = (i⇠)↵F(f)(⇠)

for every multi-index ↵ and

F(�
h0f(x))(⇠) = F(f(x+ h

0

)� f(x))(⇠) = (ei<h0,⇠> � 1)F(f)(⇠)

for every step h
0

2 Rd. Hence, if D = D(1,1,··· ,1) and D(f) = 0, then

0 = F(D(f))(⇠) = (i⇠)(1,··· ,1)F(f)(⇠) = (i)d⇠
1

⇠
2

· · · ⇠
d

F(f)(⇠). (2.2)

In particular, the support of F(f) is a subset of V =
S

d

k=1

H
k

, where H
k

=
{⇠ : ⇠

k

= 0} is an hyperplane of Rd for every k. On the other hand,

F(�(f))(⇠) =

 
dY

k=1

(ei<ek,⇠> � 1)

!
F(f)(⇠) =

 
dY

k=1

(ei⇠k � 1)

!
F(f)(⇠)

(2.3)
and, evidently, if the support of F(f) is a subset of V , then

dY

k=1

(ei⇠k � 1)F(f)(⇠) = 0

(since F(f) vanishes on all points ⇠ such that
Q

d

k=1

(ei⇠k � 1) 6= 0) and
F(�(f))(⇠) = 0, which implies �(f) = 0. Thus, if f 2 S 0(Rd) and D(f) = 0,
then �(f) = 0, which is the case n = 1 of the lemma. Assume the result holds
for n� 1 and let f 2 S 0(Rd) be such that Dnf = 0. Then

0 = Dnf = D(Dn�1f),
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so that

0 = �(Dn�1f) = Dn�1(�f)

and the induction hypothesis implies that �n�1(�f) = 0, which is what we
wanted to prove. ⇤

We are now able to prove the following result:

Corollary 2.6. Let f 2 S 0(Rd) and let H = h
1

Z+· · ·+h
s

Z be a dense subgroup
of Rd. Assume that �m+1

hk
f = 0, k = 1, · · · , s. Then there exists f⇤ 2 ⇧d

sm,tot

such that f = f⇤ almost everywhere.

Proof. Let f 2 S 0(Rd) satisfy the hypotheses of this corollary and let us take
n 2 N and F : Rd ! C a continuous slowly growing function such that
f = D(n,n,··· ,n)F . Then, for 1  k  s, we have that

0 = �m+1

hk
f

= �m+1

hk
D(n,n,··· ,n)F = D(n,n,··· ,n)(�m+1

hk
F )

Hence, Lemma 2.5 implies that

0 = �n(�m+1

hk
F ) = �m+1

hk
(�nF ), for all 1  k  s,

and since �n(F ) is continuous, we can apply Corollary 2.3 to �n(F ) to con-
clude that �n(F ) is a polynomial. In particular, F is of class C(1) and
f = D(n,n,··· ,n)F in distributional sense, which implies that f is equal al-
most everywhere to a continuous function f⇤ and this function f⇤ satisfies
�m+1

hk
f⇤ = 0, k = 1, · · · , s in the classical sense. Thus, if we apply Corollary

2.3 to f⇤ we conclude that f⇤ 2 ⇧d

sm,tot

and f = f⇤ almost everywhere. This
concludes the proof.

⇤

Obviously, we can resume all results proved in this section with the
statement of the following generalized version of Montel’s Theorem:

Theorem 2.7. We suppose that s is a positive integer, and either of the follo-
wing possibilities holds:

1. G is a finitely generated Abelian group with generators h
1

, . . . , h
s

, and
f : G ! C is a function.

2. G is a topological Abelian group, in which the elements h
1

, . . . , h
s

gen-
erate a dense subgroup in G, and f : G ! C is a continuous function.

If f satisfies

�m+1

hk
f = 0 (2.4)

for k = 1, 2, . . . , s, then f is a polynomial of total degree  sm on G. Fur-
thermore, if G = Rd, sm is the best possible. Finally, if G = Rd, the elements
h
1

, . . . , h
s

generate a dense subgroup of Rd, and f is a complex valued tem-
pered distribution on Rd which satisfies (2.4), then f = p almost everywhere
for some p 2 ⇧d

sm,tot

.
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Note that, with completely di↵erent techniques, similar results have
been recently demonstrated by Almira [2], Almira-Abu Helaiel [4] and Almira-
Székelyhidi [7].

3. Montel-Popoviciu theorem in several variables setting

In this section we prove a result of Popoviciu’s type for functions defined on
the Euclidean space Rd for d > 1. We begin by a technical lemma showing
that every polynomial P 2 ⇧s

m,max

can be decomposed as a special sum
involving polynomials of the form A

k

(t
1

+ ✓
1

t
s

, t
2

+ ✓
2

t
s

, · · · , t
s�1

+ ✓
s�1

t
s

),
with A

k

2 ⇧s�1

(s�1)m,max

and k = 0, · · · , sm.

Lemma 3.1. Let {✓
1

, · · · , ✓
s�1

} ⇢ R\{0}. Then every polynomial P 2 ⇧s

m,max

can be decomposed as a sum of the form

P (t
1

, · · · , t
s

) =
smX

k=0

A
k

(t
1

+ ✓
1

t
s

, t
2

+ ✓
2

t
s

, · · · , t
s�1

+ ✓
s�1

t
s

)tk
s

where A
k

2 ⇧s�1

(s�1)m,max

for k = 0, · · · , sm.

Proof. Let P (t
1

, · · · , t
s

) =
P

m

i1=0

P
m

i2=0

· · ·
P

m

is=0

a
i1,i2,··· ,ist

i1
1

· · · tis
s

and let
us consider the change of variables given by f

1

= t
1

+✓
1

t
s

, · · · , f
s�1

= t
s�1

+
✓
s�1

t
s

and f
s

= t
s

. Then t
k

= f
k

� ✓
k

f
s

for all 1  k  s � 1, and f
s

= t
s

,
so that

P (t
1

, · · · , t
s

) =
mX

i1=0

· · ·
mX

is=0

a
i1,··· ,is(f1 � ✓

1

f
s

)i1 · · · (f
s�1

� ✓
s�1

f
s

)is�1(f
s

)is

=
smX

k=0

A
k

(f
1

, f
2

, · · · , f
s�1

)fk

s

=
smX

k=0

A
k

(t
1

+ ✓
1

t
s

, t
2

+ ✓
2

t
s

, · · · , t
s�1

+ ✓
s�1

t
s

)tk
s

,

where A
k

(f
1

, · · · , f
s�1

) is a polynomial of s�1 variables with degree at most
(s� 1)m in each one of them, for k = 0, · · · , sm. ⇤
Theorem 3.2 (Polynomials of the formA(t

1

+✓
1

t
s

, t
2

+✓
2

t
s

, · · · , t
s�1

+✓
s�1

t
s

)).
Let {✓

1

, · · · , ✓
s�1

} ⇢ R \ {0} and let P (t
1

, · · · , t
s

) 2 ⇧s

m,max

. Then

P (t
1

, · · · , t
s

) = A
0

(t
1

+ ✓
1

t
s

, t
2

+ ✓
2

t
s

, · · · , t
s�1

+ ✓
s�1

t
s

),

with A
0

2 ⇧s�1

(s�1)m,max

if and only if there exists W ✓ Rs�1, a correct in-

terpolation set for ⇧s�1

(s�1)m,max

, such that, for all ↵ = (↵
1

, · · · ,↵
s�1

) 2 W ,

there exists a sequence of vectors {(u
1,n

, · · · , u
s�1,n

, u
s,n

)}1
n=1

satisfying the
following three conditions:

(i) u
j,n

+ ✓
j

u
s,n

! ↵
j

when n ! 1, for 1  j  s� 1.
(ii) |u

s,n

| ! 1 for n ! 1, and
(iii) {P (u

1,n

, u
2,n

, · · · , u
s�1,n

, u
s,n

)}1
n=1

is bounded.
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To prove Theorem 3.2 we need first to state some technical results:

Lemma 3.3. Let p(z) = a
0

+a
1

z+· · ·+a
N

zN 2 C[z] be an ordinary polynomial
of degree N (i.e., a

N

6= 0) and let ⇠ 2 C be a zero of p.Then

|⇠|  max{1,
N�1X

k=0

|a
k

|
|a

N

| }.

Proof. This is a well known fact, but we include the proof for the sake of
completeness. If |⇠|  1 we are done. Thus, let us assume |⇠| > 1. Obviously,

q(z) = 1

|aN |p(z) =
P

N�1

k=0

ak
aN

zk + zN satisfies q(⇠) = 0. Hence

|⇠|N =

�����

N�1X

k=0

a
k

a
N

⇠k

����� 
N�1X

k=0

|a
k

|
|a

N

| max{1, |⇠|, · · · , |⇠|N�1} =

 
N�1X

k=0

|a
k

|
|a

N

|

!
|⇠|N�1.

It follows that, in this case, |⇠| 
P

N�1

k=0

|ak|
|aN | , which is what we wanted to

prove. ⇤
Lemma 3.4. Let p(z) = a

0

+a
1

z+· · ·+a
N

zN 2 C[z] be an ordinary polynomial
of degree N (i.e., a

N

6= 0) and assume that N � 1. Let {q
n

(z)}1
n=1

be a
sequence of ordinary polynomials of degree  N ,

q
n

(z) = a
0n

+ a
1n

z + · · ·+ a
Nn

zN ,

and assume that

max{|a
k

� a
kn

| : k = 0, 1, · · · , N} < |a
N

|/2, n = 1, 2, · · · ,1.

If |w
n

| ! +1, then |q
n

(w
n

)| ! 1.

Proof. Let n 2 N and let ⇠ be a zero of q
n

(z). Then

|⇠|  max{1,
N�1X

k=0

|a
kn

|
|a

Nn

| },

and, since |a
kn

|  |a
kn

� a
k

|+ |a
k

|  |aN |
2

+ |a
k

|, |a
Nn

| � |aN |
2

, we conclude
that

|⇠|  max{1,
N�1X

k=0

2( |aN |
2

+ |a
k

|)
|a

N

| } =: M.

Thus, all zeroes of q
n

(z) belong to B
M

= {z 2 C : |z|  M} (for all n).
If |w

n

| ! 1, then dist(w
n

, B
M

) ! 1.
On the other hand, if {↵

kn

}N
k=1

denotes the set of zeroes of q
n

(z), then

q
n

(z) = a
Nn

NY

k=1

(z � ↵
kn

),

so that

|q
n

(w
n

)| = |a
Nn

|
NY

k=1

|w
n

� ↵
kn

| � |a
N

|
2

(dist(w
n

, B
M

))N ! 1. (n ! 1).

⇤
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Proof of Theorem 3.2. The necessity is obvious, since every polynomial of the
form

P (t
1

, · · · , t
s

) = A
0

(t
1

+ ✓
1

t
s

, t
2

+ ✓
2

t
s

, · · · , t
s�1

+ ✓
s�1

t
s

),

with A
0

2 ⇧s�1

(s�1)m,max

, is uniformly bounded on strips of the form

�
a,b

= {(t
1

, · · · , t
s

) : a
k

 t
k

+ ✓
k

t
s

 b
k

, k = 1, · · · , s� 1},

where {a = (a
1

, · · · , a
s�1

), b = (b
1

, · · · , b
s�1

)} ⇢ Rs�1.
Let us now prove the su�ciency. Let P (t

1

, · · · , t
s

) 2 ⇧s

m,max

. Then, for
a certain N  sm, P admits a representation of the form

P (t
1

, · · · , t
s

) =
NX

k=0

A
k

(t
1

+ ✓
1

t
s

, t
2

+ ✓
2

t
s

, · · · , t
s�1

+ ✓
s�1

t
s

)tk
s

,

where A
k

is a polynomial of s� 1 variables with degree at most (s� 1)m in
each one of them, for 0  k  N , and A

N

6= 0. We must prove N = 0.
Assume, on the contrary, that N > 0.
By hypothesis, A

N

(↵) 6= 0 for a certain ↵ = (↵
1

, · · · ,↵
s�1

) 2 W , since
A

N

2 ⇧s�1

(s�1)m,max

\{0} and W is a correct interpolation set for ⇧s�1

(s�1)m,max

.
Consider the polynomial

p(z) =
NX

i=0

A
i

(↵)zi

Now, the functions A
i

(t
1

, · · · , t
s�1

) are continuous and {u
j,n

+ ✓
j

u
s,n

} ! ↵
j

for n ! 1 and 1  j  s� 1, so that

{A
i

(u
1,n

+ ✓
1

u
s,n

, u
2,n

+ ✓
2

u
s,n

, · · · , u
s�1,n

+ ✓
s�1

u
s,n

)} ! A
i

(↵)

for i 2 {0, 1, · · · , N}. Thus, we can assume with no loss of generality, that
|A

i

(u
1,n

+✓
1

u
s,n

, u
2,n

+✓
2

u
s,n

, · · · , u
s�1,n

+✓
s�1

u
s,n

)�A
i

(↵)| < |A
N

(↵)|/2,
i = 0, 1, · · · , N , n 2 N.

Hence, if we consider the sequence of polynomials

q
n

(z) =
NX

i=0

A
i

(u
1,n

+ ✓
1

u
s,n

, u
2,n

+ ✓
2

u
s,n

, · · · , u
s�1,n

+ ✓
s�1

u
s,n

)zi,

n = 1, 2, · · · , then Lemma 3.4 implies that |q
n

(u
s,n

)| ! 1 for n ! 1. But
|q

n

(u
s,n

)| = |P (u
1,n

, u
2,n

, · · · , u
s�1,n

, u
s,n

)| is bounded. Hence, if N > 0 we
get a contradiction. It follows that N = 0 and

P (t
1

, · · · , t
s

) = A
0

(t
1

+ ✓
1

t
s

, t
2

+ ✓
2

t
s

, · · · , t
s�1

+ ✓
s�1

t
s

),

with A
0

2 ⇧s�1

(s�1)m,max

. ⇤

In the following �m+1

(✓1,··· ,✓d)f(x) denotes the usual

�m+1

(✓1,··· ,✓d)f(x) =
m+1X

k=0

✓
m+ 1

k

◆
(�1)m+1�kf(x+ k(✓

1

, · · · , ✓
d

)).
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Corollary 3.5. Assume that f : Rd ! R is bounded on a certain open set
U ✓ Rd, U 6= ;, and H = Zd + (✓

1

, ✓
2

, · · · , ✓
d

)Z is a dense subgroup of Rd.
If � = {e

k

}d
k=1

denotes the canonical basis of Rd and f satisfies

�m+1

ek
f(x) = 0, for k = 1, · · · , d; �m+1

(✓1,··· ,✓d)f(x) = 0,

and P
a,�

denotes the polynomial constructed in Lemma 2.1, for � = � [
{(✓

1

, · · · , ✓
d

)}, then

P
a,�

(t
1

, · · · , t
d+1

) = A(t
1

+ ✓
1

t
d+1

, t
2

+ ✓
2

t
d+1

, · · · , t
d

+ ✓
d

t
d+1

),

with A 2 ⇧d

dm,max

.

Proof. There is no loss of generality if we assume that a = 0. Indeed, if we
use the notation P

a,�

(f) for the polynomial constructed in Lemma 2.1 for
the function f , and we take g(x) = f(x+ a), then it is clear that P

a,�

(f) =
P0,�(g).

Let W ✓ U be a correct interpolation set for ⇧d

dm,max

whose entries
have rational coordinates (such set obviously exists since U is open). Then,
for every ↵ = (↵

1

, · · · ,↵
d

) 2 W there exists a sequence {(i
1,n

, · · · , i
d,n

) +
i
d+1,n

(✓
1

, · · · , ✓
d

)}1
n=1

which is contained in U and satisfies

lim
n!1

(i
1,n

, · · · , i
d,n

) + i
d+1,n

(✓
1

, · · · , ✓
d

) = ↵.

The density of H = Zd + (✓
1

, ✓
2

, · · · , ✓
d

)Z in Rd implies that the numbers
{1, ✓

1

, · · · , ✓
d

} form a linearly independent system over Q. In particular, ✓
k

is
an irrational number for k = 1, · · · , d. From this, and from the convergence
of i

k,n

+ ✓
k

i
d+1,n

to ↵
k

2 Q, it follows that |i
d+1,n

| ! 1 for n ! 1. On the
other hand,

P
0,�

(i
1,n

, · · · , i
d,n

, i
d+1,n

) = f((i
1,n

, · · · , i
d,n

) + i
d+1,n

(✓
1

, · · · , ✓
d

))

is bounded. Thus, we can apply Theorem 3.2 to P
0,�

, completing the proof.
⇤

Now we are ready to prove the main result of this section:

Theorem 3.6 (Montel-Popoviciu theorem for several variables). Assume that
H = Zd+(✓

1

, ✓
2

, · · · , ✓
d

)Z is a dense subgroup of Rd. If � = {e
k

}d
k=1

denotes
the canonical basis of Rd and f : Rd ! R satisfies

�m+1

ek
f(x) = 0, for k = 1, · · · , d, and �m+1

(✓1,··· ,✓d)f(x) = 0,

and is continuous at every point of a set W ✓ Rd which is a correct interpo-
lation set for ⇧d

dm,max

, then f 2 ⇧d

m,max

.

Proof. We divide the proof into two parts. In the first one we prove that f
is an ordinary polynomial which belongs to ⇧d

dm,max

. In the second part we

improve the result by showing that f 2 ⇧d

m,max

, which is a smaller space of
polynomials.
Part I: To show that f 2 ⇧d

dm,max

, note that continuity of f at just one point

implies that f is bounded on a certain nonempty open set U ✓ Rd, so that we
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can apply Corollary 3.5 to f . In particular, for every a = (a
1

, · · · , a
d

) 2 Rd,
there exists A

a

2 ⇧d

dm,max

satisfying

A
a

((n
1

, · · · , n
d

)+n
d+1

(✓
1

, · · · , ✓
d

)) = f(a+(n
1

, · · · , n
d

)+n
d+1

(✓
1

, · · · , ✓
d

))

for all (n
1

, · · · , n
d+1

) 2 Zd+1. The result follows if we prove that, for any
a 2 Rd, the relation

A
a

(x) = A0(x� a) (3.1)

holds for all x 2 Rd (here, 0 denotes the zero vector (0, · · · , 0) 2 Rd). To
prove this, it is enough to take into account that, if (3.1) holds true, then,
for each a 2 Rd, we have that

f(a) = A
a

(0) = A0(�a).

In other words, f(x) = A0(�x) 2 ⇧d

dm,max

.

Let us demonstrate the validity of (3.1). We fix a 2 Rd and we define
the polynomial C(x) = A0(x� a). Let us show that C = A

a

. Obviously, C 2
⇧d

dm,max

. Assume that f is continuous at every point of a setW ✓ Rd which is

a correct interpolation set for ⇧d

dm,max

. Obviously, C 2 ⇧d

dm,max

, so that C =

A
a

if and only if C|W = (A
a

)|W . Take ↵ 2 W . The density of H in Rd implies
that, for certain sequences of vectors (i

1,n

, · · · , i
d+1,n

), (j
1,n

, · · · , j
d+1,n

) 2
Zd+1, we will have that

↵ = lim
n!1

[(i
1,n

, · · · , i
d,n

) + i
d+1,n

(✓
1

, · · · , ✓
d

)]

= lim
n!1

[a+ (j
1,n

, · · · , j
d,n

) + j
d+1,n

(✓
1

, · · · , ✓
d

)].

Hence, the continuity of f at ↵ implies that

f(↵) = lim
n!1

[f((i
1,n

, · · · , i
d,n

) + i
d+1,n

(✓
1

, · · · , ✓
d

))]

= lim
n!1

[A0((i1,n, · · · , id,n) + i
d+1,n

(✓
1

, · · · , ✓
d

))]

= A0(↵)

and

f(↵) = lim
n!1

[f(a+ (j
1,n

, · · · , j
d,n

) + j
d+1,n

(✓
1

, · · · , ✓
d

))]

= lim
n!1

[A
a

(j
1,n

, · · · , j
d,n

) + j
d+1,n

(✓
1

, · · · , ✓
d

))]

= A
a

(↵� a) = C(↵)

It follows that C(↵) = A0(↵) for all ↵ 2 W . This concludes the proof that
f 2 ⇧d

dm,max

.

Part II: Let us prove f 2 ⇧d

m,max

. By Part I we know that f 2 ⇧d

dm,max

.
Thus, if we apply the set of equations

�m+1

ek
f(x) = 0, for k = 1, · · · , d.
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to f 2 ⇧d

dm,max

, we get that f 2 ⇧d

m,max

. Indeed, if f 2 ⇧d

N,max

, then for
every k 2 {1, · · · , d} we can uniquely decompose f as a sum

f =
NX

i=1

�
i

(x
1

, · · · , x
k�1

, x
k+1

, · · · , x
d

)xi

k

,

with �
1

, · · · ,�
N

polynomials in d � 1 variables and �
N

6= 0. We must show
that N  m. Now,

�m+1

ek
f(x) =

NX

i=0

�
i

(x
1

, · · · , x
k�1

, x
k+1

, · · · , x
d

)�m+1

1

xi

k

=
NX

i=m+1

�
i

(x
1

, · · · , x
k�1

, x
k+1

, · · · , x
d

)�m+1

1

xi

k

,

which is equal to zero if and only if N  m. This ends the proof for both
parts. ⇤
Corollary 3.7. Let H = h

1

Z+ · · ·+h
s

Z be a finitely generated subgroup of Rd

and assume that Zd+(✓
1

, ✓
2

, · · · , ✓
d

)Z ✓ H for certain system of real numbers
{✓

k

}d
k=1

such that {1, ✓
1

, · · · , ✓
d

} is Q-linearly independent. If f : Rd ! R
satisfies

�m+1

hk
f(x) = 0, for k = 1, · · · , s

and is continuous at every point of a set W ✓ Rd which is a correct interpo-
lation set for ⇧d

dsm,max

, then f 2 ⇧d

sm,max

.

Proof. Applying Corollary 2.3 to f we conclude that �sm+1

h

f = 0 for all h 2
H. In particular, we can use Theorem 3.6 with this function just substituting
m by sm. ⇤

4. Optimality

In this section we prove that Popoviciu’s original theorem is optimal, and we
consider the optimality of Theorem 3.6 in the several variables setting. Let
us start with the case d = 1. Consider the function

f(x) =

⇢
x(x� 1) · · · (x� (m� 1)) x 2 h

1

Z+ h
2

Z
0 otherwise

,

where H = h
1

Z + h
2

Z is assumed to be dense in R. If x 2 H, then {x +
kh

i

}m+1

k=0

✓ H for i = 1, 2, so that f|{x+khi}m+1
k=0

= p|{x+khi}m+1
k=0

, where p(x) =

x(x� 1) · · · (x� (m� 1)). Thus, for i 2 {1, 2},

�m+1

hi
f(x) =

m+1X

k=0

✓
m+ 1

k

◆
(�1)m+1�kf(x+ kh

i

)

=
m+1X

k=0

✓
m+ 1

k

◆
(�1)m+1�kp(x+ kh

i

)

= �m+1

hi
p(x) = 0,
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since p 2 ⇧
m

. On the other hand, if x 62 H, then {x+ kh
i

}m+1

k=0

\H = ;, so
that f|{x+khi}m+1

k=0
= 0, and �m+1

hi
f(x) = 0. This proves that �m+1

hi
f(x) = 0

for all x, for i = 1, 2. Furthermore, f is continuous at m points and it is not
an ordinary polynomial.

Let us now consider the case d > 1.
Let H = Zd + (✓

1

, · · · , ✓
d

)Z be a dense subgroup of Rd, and let us
consider the function
F (x

1

, · · · , x
d

) = F
1

(x
1

, · · · , x
d

)+· · ·+F
d

(x
1

, · · · , x
d

), where F
i

(x
1

, · · · , x
d

) =
g(x

i

) and

g(x) =

⇢
x(x� 1) · · · (x� (m� 1)) x 2 ✓

1

Z+ ✓
2

Z+ · · ·+ ✓
d

Z
0 otherwise

.

Let us compute �m+1

ek
F and �m+1

(✓1,··· ,✓d)F . First of all, it is easy to check

that �m+1

ek
F
i

= 0 for 1  i, k  d and, hence, �m+1

ek
F =

P
d

i=1

�m+1

ek
F
i

= 0,
for k = 1, · · · , d. On the other hand, if x = (x

1

, · · · , x
d

) 2 Rd, then

�m+1

(✓1,··· ,✓d)F (x) =
m+1X

k=0

✓
m+ 1

k

◆
(�1)m+1�kF (x+ k(✓

1

, · · · , ✓
d

))

=
m+1X

k=0

✓
m+ 1

k

◆
(�1)m+1�kF (x

1

+ k✓
1

, · · · , x
d

+ k✓
d

)

=
m+1X

k=0

✓
m+ 1

k

◆
(�1)m+1�k

dX

i=1

g(x
i

+ k✓
i

)

=
dX

i=1

 
m+1X

k=0

✓
m+ 1

k

◆
(�1)m+1�kg(x

i

+ k✓
i

)

!

=
dX

i=1

�m+1

✓i
g(x

i

).

Now, if t 2 � = ✓
1

Z+ · · ·+✓
d

Z, then {t+k✓
i

}m+1

k=0

✓ �, so that g|{t+k✓i}m+1
k=0

=

p|{t+k✓i}m+1
k=0

, where p(t) = t(t � 1) · · · (t � (m � 1)), and �m+1

✓i
g(t) = 0. If

t 62 �, then {t+ k✓
i

}m+1

k=0

\� = ; and �m+1

✓i
g(t) = 0. This means that, for all

x = (x
1

, · · · , x
d

) 2 Rd, �m+1

✓i
g(x

i

) = 0. Hence �m+1

(✓1,··· ,✓d)F = 0.

Now F is continuous at W = {(i
1

, · · · , i
d

) : 0  i
k

 m� 1, for all 1 
k  d}, which is a correct interpolation set for ⇧d

m�1,max

. If we take into

account that the conclusion of Theorem 3.6 is that f 2 ⇧d

m,max

, it seems
natural to claim that this example shows that Theorem 3.6 is optimal (or
near optimal) also for d > 1.
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Sup. 4 (1875) 57-112.
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